Алгебраические уравнения
Анализ и синтез математических моделей физических устройств и процессов
Аналитический синтез и анализ математических моделей
Выбор модели движение нарушителя относительно наблюдаемых объектов ИК СФЗ в контролируемой зоне
Общее предельное решение алгебраических уравнений
Отображение алгебраических функций (Вторая исправленная редакция)
Порядок проведения оптимизации структуры ИК СФЗ на основе выбора наиболее эффективных альтернативных вариантов
Реализация алгоритма для расчета минимального времени проникновения нарушителя
Решение алгебраических уравнений высоких степеней (Вторая исправленная редакция)
Симметричные алгебраические моменты (Вторая исправленная редакция)
Теория отображения алгебраических функций
В работе излагаются основы теории алгебраических уравнений. Приводятся методы предельного (приближенного) общего решения уравнений, практически любых степеней. При этом точность решений может выбираться сколь угодно высокой. Построенные решения просты и позволяют производить как численные вычисления корней, так и исследование поведения корней в функции физических параметров описываемых уравнениями процессов
В настоящей работе предпринята попытка создания аналитического аппарата анализа и синтеза функций математических моделей. Возможность его создания наступила после разработки метода отображений позволяющего перемещать, разворачивать и деформировать прототип функции под произвольные требования
На примерах уравнений второй, третьей, четвёртой и пятой степеней изложен, основанный на теории отображений функций, аналитический аппарат синтеза и анализа математических моделей
Успех в достижении цели и решении задач физической защиты охраняемых особо важных объектов важное место занимают интегрированные комплексы СФЗ. Для оценки эффективности данных комплексов проводятся научно-исследовательские работы, направленные на улучшение или модернизацию СФЗ за счет оптимизации структуры или состава оборудования комплексов.
Настоящая статья является продолжением работы автора “Решение алгебраических уравнений высоких степеней”, в которой обоснованы принцип разделения уравнений на элементарные и решение последних в общей форме. Здесь детализуются принципы, выводятся практические приемы и “конечные” формулы решения уравнений
В работе раскрывается отображение рациональных алгебраических функций – оригиналов в рациональные алгебраические функции – образы. В качестве отображающих функций рассматриваются те же рациональные, дробно-рациональные и многомерные алгебраические функции
Процедура проведения оптимизации структуры ИК СФЗ на основе выбора наиболее эффективных альтернативных вариантов предполагает проведение следующих действий: выполнение подготовительных работ, вычисление целевой функции …
Современное состояние проблемы обеспечения безопасности особо важных объектов определяется множеством факторов, в том числе и применением технических систем обеспечения охраны. В ряде научных исследований большое внимание уделено созданию моделей движения нарушителя и различных алгоритмов расчета параметров его движения на территории защищаемых объектов. В данной работе рассматривается реализация алгоритма расчета минимального времени для проникновения нарушителя на особо важный объект.
В настоящей работе применяется простейшее из нелинейных отображений, так называемое, стандартное или кратное, осуществляемое одночленной функцией (2), в отличие от общего случая, когда любая алгебраическая функция может быть отображена любой алгебраической функцией
Симметричные моменты – это всевозможные физические моменты точек плоскости, выраженные через коэффициенты уравнения, корнями которого эти точки являются. Одновременно, симметричный момент – это математический аппарат, позволяющий производить громоздкие вычисления
В работе представлен систематизированный (т. е. единый и обобщенный) метод преобразования любой алгебраической функции-оригинала, посредством любой алгебраической функции отображения в любую алгебраическую функцию-образ