• часть 1 • часть 2 • часть 4 • часть 5 •
Основным способом передачи видеосигнала в настоящее время является коаксиальный кабель. Это не случайно - такой тип кабеля наиболее дешев и надежен в широком диапазоне применений. Впрочем, все написанное ниже относится и к витой паре и к любому другому типу проводника. Суть проблемы в том, что свет (и прочие электромагнитные колебания) распространяются быстро, но не мгновенно. Поэтому изменения сигнала на выходе из видеокамеры не приводят мгновенно к таким же изменениям на входе видеомонитора. Эти изменения распространяются по кабелю со скоростью света - 300 000 км/сек, а на самом деле даже меньше - в материале кабеля электромагнитные волны распространяются в полтора - два раза медленнее. Таким образом, уже 300 метров кабеля означает задержку в 2 микросекунды (все расчеты, как всегда, с точностью -30%).
Волновое сопротивление - это не совсем сопротивление
Все слышали, что у кабеля есть "волновое сопротивление", оно же "импеданс". Не вдаваясь в детали напомню, что оно означает: это величина резистора, который можно подключить к концу кабеля, так что при этом волна, бегущая по кабелю полностью уйдет в этот резистор, как будто бы это было бесконечное продолжение кабеля. Это сам по себе нетривиальный факт - что обычное резистивное сопротивление для волны неотличимо от кабеля, но оставим это физикам. Для нас, инженеров-практиков, главное, что в таком случае волна вся уходит в приемник сигнала.
Отражение сигнала
Если же согласование нарушено - например, в системе видеонаблюдения, рассчитанной на кабель с импедансом 75 Ом, применен компьютерный кабель с волновым сопротивлением 50 Ом, то некоторая доля волны отразится от монитора. Примерно 30%. Эта волна побежит обратно к видеокамере, там тоже отразится и в результате на приемном конце окажутся две волны - одна первая (основная), и вторая - которая пробежала по кабелю туда-обратно еще раз. Эта волна значительно слабее, процентов 10 от основной. И хуже всего, что она отстает от основного сигнала на 4 микросекунды (на кабеле 300 метров).
Между прочим, развертка на экране монитора проходит строку за 64 микросекунды. Так что отставшая волна создаст блеклые привидения, смещенные от основного изображения на 7-8% от ширины экрана. Этот тот же эффект, который происходит при отражениях сигналов эфирного телевещания от высоких зданий. Правда, снести соседние небоскребы обычно не в нашей власти, а вот при передаче видеосигнала по кабелю все в наших руках - и лишь мы сами можем создавать себе проблемы.
Сигнал делится пополам
Надеюсь, предыдущий пассаж убедил вас в необходимости применения кабеля с правильным импедансом. А именно 75 Ом. На такое волновое сопротивление кабеля рассчитана вся аппаратура систем видеонаблюдения. Мониторы имеют входное сопротивление 75 Ом, а камеры - выходное сопротивление 75 Ом. Обратите внимание - камеры тоже имеют выходное сопротивление. Это значит, что при отключенной нагрузке сигнал на выходе камеры вдвое больше номинального. Видел я одного "деятеля" - он утверждал, что при отключении нагрузки в мониторе сигнал становится "лучше". Это просто у него кабель был настолько плохой, сигнал настолько затухал, что ему было уже не до согласования - удвоение сигнала позволяло хоть как-то вытащить сигнал и это называлось "лучше". В нормальной ситуации удвоенный сигнал приводит к перегрузке входных цепей монитора или по крайней мере к некоторому ухудшению передачи градаций серого.
Отражение на неоднородностях (скрутках)
К сожалению, понятие "волновое сопротивление кабеля" относится к идеальному кабелю. Реальный кабель не совсем эквивалентен омическому сопротивлению, поэтому некоторое отражение все-таки происходит. Более того, кабель сначала подключен к разъему, тот - коротенькими проводочками к какой-то электронной схеме и лишь там стоит согласующее сопротивление. Это совсем не то же самое, что идеальное точечное сопротивление, установленное на срезе кабеля. Все эти переходные элементы нарушают идеальную картину и означают нарушение согласования. Однако если они находятся очень близко к концу кабеля - это не так страшно. Чтобы это отражение стало заметным -отраженной волне надо сбегать вдоль всего кабеля в обе стороны, при этом она значительно ослабнет. А вот если кабель где-нибудь посередине порван и его нарастили "скруткой" - это хуже. Скрутка на расстоянии около 100 метров от края - это худший случай. Отраженный сигнал достаточно смещен относительно основного, но еще недостаточно ослабляется затуханием в кабеле.
Распределенное отражение
Сам кабель тоже не идеален. Даже если вы не испортили его при прокладке (скрутками или просто деформациями), он изначально не слишком однороден. Где-то есть дефекты, перепады состава материала диэлектрика или проводника -такой параметр (распределенное отражение волны) обычно приводится на кабели в техдокументации. Это уже один из параметров, по которым кабели отличаются "лучше-хуже". Впрочем, не самый главный.
Затухание сигнала
Значительно важнее такой параметр, как затухание сигнала в кабеле. Причем, внимание! Затухание сигнала разное на разных частотах.
Высокочастотное - потери в диэлектрике
Как правило, для кабеля приводится значения затухания на частотах 100 - 500 МГц. В лучшем случае, на частоту 10 МГц. Этот параметр очень важен, если вы собираетесь передавать по кабелю телевизионный модулированный сигнал, особенно дециметровых диапазонов. Однако низкочастотный видеосигнал, применяемый обычно в системах видеонаблюдения, занимает полосу от 50 Гц до 5 МГц. С одной стороны, это хорошо, что частоты низкие - затухание меньше. А с другой стороны - это огромный диапазон - отношение самой низкой частоты к самой высокой составляет 100000. И самое страшное - что одни частоты будут затухать сильнее, другие слабее - это уже искажения сигнала - тут никакой усилитель не поможет. Конечно, усилители обычно имеют раздельную регулировку усиления "по низким" и "по высоким", но компенсировать неравномерную частотную характеристику, конечно, не смогут.
Низкочастотное - по сопротивлению постоянному току
Особенно часто проблемой оказывается затухание по низким частотам - по постоянному току. Волновое сопротивление кабеля определяется отношением диаметров центральной жилы и экрана. Поэтому у тонких кабелей центральная жила недопустимо тонкая и имеет очень высокое омическое сопротивление. У стандартного РК-75-4 (примерный аналог RG-59U) сопротивление центральной жилы составляет около 5 Ом на 100 метров. Максимально допустимое общее сопротивление в зависимости от требований к качеству сигнала составляет 10-20 Ом (для RG-59U это 200-400 метров кабеля). Как нетрудно догадаться (см. предыдущий выпуск), для встречающегося иногда тоненького кабеля РК-75-1.5 (вторая цифра - диаметр внутренней изоляции) погонное сопротивление в 7 раз выше, а значит и в семь раз меньше допустимая длина: 30, максимум 60 метров. Вот так-то.
А еще бывает кабель с центральной жилой в виде стальной проволоки, покрытой тонким слоем меди. Он прочнее и дешевле обычного, но: предназначен только для высокочастотных сигналов (слышали про скин-слой? - высокочастотные сигналы распространяются в тонком поверхностном слое). Для низкочастотных сигналов существенно, что удельное сопротивление стали в несколько раз выше, чем у меди, а стало быть, допустимое расстояние передачи сигнала по такому кабелю в несколько раз меньше (50-100 метров).
Фазовые искажения
Однако неравномерность амплитудно-частотной характеристики - еще не самое страшное. В какой-то мере это можно компенсировать раздельными регулировками усиления низких и высоких частот в специальном усилителе-корректоре. Таким образом удается поднять допустимое расстояние распространения раза в два - если говорят, что RG-59 позволяет передавать на 300 метров, то с усилителем сгодится и метров на 600. А кабель типа RG-11 сгодился бы, наверное и до 2-3 километров. Если бы искажения были связаны только с неоднородностью амплитудно-частотной характеристики.
Однако есть еще и фазовые искажения, связанные с тем что волны разных частот распространяются с разными скоростями. Такие искажения исправить практически невозможно. Проявляется этот эффект в виде размазывания или, наоборот, звона на контуров объектов. Слишком уж велик перепад частот НЧ видеосигнала - от 50 Гц до 5 МГц. Самая высокая частота во 100 000 раз выше самой низкой! Скорость распространения волн в таком диапазоне меняется на несколько процентов даже у лучших применяемых ныне материалов. Поэтому, если сигнал распространяется на километр за 10 микросекунд, то разные его составляющие при этом разбегаются почти на микросекунду, то есть примерно на 1/100 экрана (строка = 64 микросекунды) - в результате вы получаете разрешение видеосистемы на уровне 100 ТВ линий. Вот так-то.
Некоторые кабели по этому параметру чуть лучше, некоторые чуть хуже. Но разброс невелик, два-три раза. Все определяется диэлектриком (изолятором), а выбор небогат - полиэтилен, поливинил, фторопласт. Вспененный полимер несколько лучше монолитного, но тоже ненамного. Сильно выделяется лишь кабель с воздушным, а еще лучше -вакуумным изолятором. Впрочем ценой такой кабель тоже выделяется. Кстати, у витой пары этот параметр чуть лучше, чем у коаксиального кабеля с литым диэлектриком и хуже, чем у кабеля со вспененным.
Так что не верьте слухам, что НЧ видеосигнал можно как-то передать более чем на километр. Получится именно "как-то". То есть на экране будет видно "что-то". На расстояния 2 и более километров видеосигнал ходит только модулированным, на высокочастотной несущей - от 50 МГц и далее, вплоть до лазерного излучения в волоконно-оптических системах. В таком случае полоса передаваемых частот занимает диапазон, например, от 70 до 75 МГц и фазовых искажений почти нет. Но об этом в следующей передаче.
технический директор
ЗАО "Компания Безопасность"