часть 1часть 2часть 4часть 5

Основным способом передачи видеосигнала в настоящее время является коаксиальный кабель. Это не случайно - такой тип кабеля наиболее дешев и надежен в широком диапазоне применений. Впрочем, все написанное ниже относится и к витой паре и к любому другому типу проводника. Суть проблемы в том, что свет (и прочие электромагнитные колебания) распространяются быстро, но не мгновенно. Поэтому изменения сигнала на выходе из видеокамеры не приводят мгновенно к таким же изменениям на входе видеомонитора. Эти изменения распространяются по кабелю со скоростью света - 300 000 км/сек, а на самом деле даже меньше - в материале кабеля электромагнитные волны распространяются в полтора - два раза медленнее. Таким образом, уже 300 метров кабеля означает задержку в 2 микросекунды (все расчеты, как всегда, с точностью -30%).



Волновое сопротивление - это не совсем сопротивление


Все слышали, что у кабеля есть "волновое сопротивление", оно же "импеданс". Не вдаваясь в детали напомню, что оно означает: это величина резистора, который можно подключить к концу кабеля, так что при этом волна, бегущая по кабелю полностью уйдет в этот резистор, как будто бы это было бесконечное продолжение кабеля. Это сам по себе нетривиальный факт - что обычное резистивное сопротивление для волны неотличимо от кабеля, но оставим это физикам. Для нас, инженеров-практиков, главное, что в таком случае волна вся уходит в приемник сигнала.



Отражение сигнала


Если же согласование нарушено - например, в системе видеонаблюдения, рассчитанной на кабель с импедансом 75 Ом, применен компьютерный кабель с волновым сопротивлением 50 Ом, то некоторая доля волны отразится от монитора. Примерно 30%. Эта волна побежит обратно к видеокамере, там тоже отразится и в результате на приемном конце окажутся две волны - одна первая (основная), и вторая - которая пробежала по кабелю туда-обратно еще раз. Эта волна значительно слабее, процентов 10 от основной. И хуже всего, что она отстает от основного сигнала на 4 микросекунды (на кабеле 300 метров).



схема отражение сигнала

Между прочим, развертка на экране монитора проходит строку за 64 микросекунды. Так что отставшая волна создаст блеклые привидения, смещенные от основного изображения на 7-8% от ширины экрана. Этот тот же эффект, который происходит при отражениях сигналов эфирного телевещания от высоких зданий. Правда, снести соседние небоскребы обычно не в нашей власти, а вот при передаче видеосигнала по кабелю все в наших руках - и лишь мы сами можем создавать себе проблемы.



Сигнал делится пополам


Надеюсь, предыдущий пассаж убедил вас в необходимости применения кабеля с правильным импедансом. А именно 75 Ом. На такое волновое сопротивление кабеля рассчитана вся аппаратура систем видеонаблюдения. Мониторы имеют входное сопротивление 75 Ом, а камеры - выходное сопротивление 75 Ом. Обратите внимание - камеры тоже имеют выходное сопротивление. Это значит, что при отключенной нагрузке сигнал на выходе камеры вдвое больше номинального. Видел я одного "деятеля" - он утверждал, что при отключении нагрузки в мониторе сигнал становится "лучше". Это просто у него кабель был настолько плохой, сигнал настолько затухал, что ему было уже не до согласования - удвоение сигнала позволяло хоть как-то вытащить сигнал и это называлось "лучше". В нормальной ситуации удвоенный сигнал приводит к перегрузке входных цепей монитора или по крайней мере к некоторому ухудшению передачи градаций серого.



Отражение на неоднородностях (скрутках)


К сожалению, понятие "волновое сопротивление кабеля" относится к идеальному кабелю. Реальный кабель не совсем эквивалентен омическому сопротивлению, поэтому некоторое отражение все-таки происходит. Более того, кабель сначала подключен к разъему, тот - коротенькими проводочками к какой-то электронной схеме и лишь там стоит согласующее сопротивление. Это совсем не то же самое, что идеальное точечное сопротивление, установленное на срезе кабеля. Все эти переходные элементы нарушают идеальную картину и означают нарушение согласования. Однако если они находятся очень близко к концу кабеля - это не так страшно. Чтобы это отражение стало заметным -отраженной волне надо сбегать вдоль всего кабеля в обе стороны, при этом она значительно ослабнет. А вот если кабель где-нибудь посередине порван и его нарастили "скруткой" - это хуже. Скрутка на расстоянии около 100 метров от края - это худший случай. Отраженный сигнал достаточно смещен относительно основного, но еще недостаточно ослабляется затуханием в кабеле.



Распределенное отражение


Сам кабель тоже не идеален. Даже если вы не испортили его при прокладке (скрутками или просто деформациями), он изначально не слишком однороден. Где-то есть дефекты, перепады состава материала диэлектрика или проводника -такой параметр (распределенное отражение волны) обычно приводится на кабели в техдокументации. Это уже один из параметров, по которым кабели отличаются "лучше-хуже". Впрочем, не самый главный.



Затухание сигнала


Значительно важнее такой параметр, как затухание сигнала в кабеле. Причем, внимание! Затухание сигнала разное на разных частотах.



Высокочастотное - потери в диэлектрике


Как правило, для кабеля приводится значения затухания на частотах 100 - 500 МГц. В лучшем случае, на частоту 10 МГц. Этот параметр очень важен, если вы собираетесь передавать по кабелю телевизионный модулированный сигнал, особенно дециметровых диапазонов. Однако низкочастотный видеосигнал, применяемый обычно в системах видеонаблюдения, занимает полосу от 50 Гц до 5 МГц. С одной стороны, это хорошо, что частоты низкие - затухание меньше. А с другой стороны - это огромный диапазон - отношение самой низкой частоты к самой высокой составляет 100000. И самое страшное - что одни частоты будут затухать сильнее, другие слабее - это уже искажения сигнала - тут никакой усилитель не поможет. Конечно, усилители обычно имеют раздельную регулировку усиления "по низким" и "по высоким", но компенсировать неравномерную частотную характеристику, конечно, не смогут.



Низкочастотное - по сопротивлению постоянному току


Особенно часто проблемой оказывается затухание по низким частотам - по постоянному току. Волновое сопротивление кабеля определяется отношением диаметров центральной жилы и экрана. Поэтому у тонких кабелей центральная жила недопустимо тонкая и имеет очень высокое омическое сопротивление. У стандартного РК-75-4 (примерный аналог RG-59U) сопротивление центральной жилы составляет около 5 Ом на 100 метров. Максимально допустимое общее сопротивление в зависимости от требований к качеству сигнала составляет 10-20 Ом (для RG-59U это 200-400 метров кабеля). Как нетрудно догадаться (см. предыдущий выпуск), для встречающегося иногда тоненького кабеля РК-75-1.5 (вторая цифра - диаметр внутренней изоляции) погонное сопротивление в 7 раз выше, а значит и в семь раз меньше допустимая длина: 30, максимум 60 метров. Вот так-то.

А еще бывает кабель с центральной жилой в виде стальной проволоки, покрытой тонким слоем меди. Он прочнее и дешевле обычного, но: предназначен только для высокочастотных сигналов (слышали про скин-слой? - высокочастотные сигналы распространяются в тонком поверхностном слое). Для низкочастотных сигналов существенно, что удельное сопротивление стали в несколько раз выше, чем у меди, а стало быть, допустимое расстояние передачи сигнала по такому кабелю в несколько раз меньше (50-100 метров).



Фазовые искажения


Однако неравномерность амплитудно-частотной характеристики - еще не самое страшное. В какой-то мере это можно компенсировать раздельными регулировками усиления низких и высоких частот в специальном усилителе-корректоре. Таким образом удается поднять допустимое расстояние распространения раза в два - если говорят, что RG-59 позволяет передавать на 300 метров, то с усилителем сгодится и метров на 600. А кабель типа RG-11 сгодился бы, наверное и до 2-3 километров. Если бы искажения были связаны только с неоднородностью амплитудно-частотной характеристики.

Однако есть еще и фазовые искажения, связанные с тем что волны разных частот распространяются с разными скоростями. Такие искажения исправить практически невозможно. Проявляется этот эффект в виде размазывания или, наоборот, звона на контуров объектов. Слишком уж велик перепад частот НЧ видеосигнала - от 50 Гц до 5 МГц. Самая высокая частота во 100 000 раз выше самой низкой! Скорость распространения волн в таком диапазоне меняется на несколько процентов даже у лучших применяемых ныне материалов. Поэтому, если сигнал распространяется на километр за 10 микросекунд, то разные его составляющие при этом разбегаются почти на микросекунду, то есть примерно на 1/100 экрана (строка = 64 микросекунды) - в результате вы получаете разрешение видеосистемы на уровне 100 ТВ линий. Вот так-то.

Некоторые кабели по этому параметру чуть лучше, некоторые чуть хуже. Но разброс невелик, два-три раза. Все определяется диэлектриком (изолятором), а выбор небогат - полиэтилен, поливинил, фторопласт. Вспененный полимер несколько лучше монолитного, но тоже ненамного. Сильно выделяется лишь кабель с воздушным, а еще лучше -вакуумным изолятором. Впрочем ценой такой кабель тоже выделяется. Кстати, у витой пары этот параметр чуть лучше, чем у коаксиального кабеля с литым диэлектриком и хуже, чем у кабеля со вспененным.

Так что не верьте слухам, что НЧ видеосигнал можно как-то передать более чем на километр. Получится именно "как-то". То есть на экране будет видно "что-то". На расстояния 2 и более километров видеосигнал ходит только модулированным, на высокочастотной несущей - от 50 МГц и далее, вплоть до лазерного излучения в волоконно-оптических системах. В таком случае полоса передаваемых частот занимает диапазон, например, от 70 до 75 МГц и фазовых искажений почти нет. Но об этом в следующей передаче.



Автор: А.М. Омельянчук
технический директор
ЗАО "Компания Безопасность"
Читайте также: